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Abstract English 
Urban area tessellation is a crucial aspect in many spatial analyses. While regular 
tessellation methods, like square-grid or hexagon-grid, are suitable for addressing pure 
geometry problems, they cannot take the unique characteristics of different subareas into 
account. Irregular tessellation methods allow the border between the subareas to be 
defined more realistically based on the urban features like road network or POI data. This 
paper studies and compares five different tessellation methods: Squares, hexagons, 
adaptive squares, Voronoi diagrams, and city blocks. We explain how (open-source) POI 
data can be integrated into the tessellation process to build what we call “Local Geo-
graphic Units” (POI-based tiles). These units are flexible and adaptable to the structure of 
the studied area and underlying data and could improve the performance of further 
analyses. The results of the various tessellation methods are demonstrated for the city of 
Frankfurt am Main in Germany. A simple clustering of Local Geographic Units for the 
studied city indicates that city blocks perform better than the other methods in the city 
segmentation in terms of reflecting the structure of this city. 

 

Abstract Deutsch  
Die Tessellierungen urbaner Gebiete ist ein entscheidender Aspekt bei räumlichen 
Analysen. Regelmäßige Tessellierungen, wie die Unterteilung in Quadrate oder Hexagons, 
eignen sich zwar für Probleme rein geometrischer Natur, berücksichtigen aber die 
Charakteristika der enthaltenen kleineren geographischen Einheiten nicht. Unregelmäßige 
Tessellierungen ermöglichen eine realitätsnahe Unterteilung basierend auf städtischen 
Merkmalen, wie dem Straßennetz oder POI-Daten. In diesem Beitrag werden fünf 
verschiedene Tessellierungsmethoden vorgestellt und verglichen: Quadrate, Hexagons, 
adaptive Quadrate, Voronoi-Diagramme und City-Blocks. Die Integration von (Open-
Source) POI-Daten in den Tessellierungsprozess führt zu sogenannten „Lokalen 
Geographischen Einheiten“. Diese POI-basierten Einheiten sind flexibel und passen sich 
sowohl der Struktur des zu untersuchenden Gebiets, als auch der zugrundeliegenden Daten 
an und erlaube dadurch darauf aufbauende, detailliertere Analysen. Alle vorgestellten 
Tessellierungsmethoden werden an dem Beispiel Frankfurt am Main durchgeführt und 
präsentiert. Ein einfaches „Clustering“ der Lokalen Geographischen Einheiten zeigt, dass 
City-Blocks die Struktur der Stadt besser abbilden können, als die anderen vorgestellten 
Methoden. 
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1 Introduction 

Cities and urban areas are complex systems (Healey, 2006; Portugali and Stolk, 2016). 
With advancing digitization and innovative mobility, the amount of data collected is 
growing rapidly. Smart cities and smart mobility are becoming more and more important 
for urban planners (Alvares et al., 2011). In Germany in particular, almost every decision 
relates to administratively defined city or district boundaries, which does not consider 
the actual structure of the city and the interdependency between city districts. A cross-
district view taking the structure of the city into account is more suitable for many topics 
such as traffic planning. Therefore, it is necessary to discretely capture the structure of 
urban areas without using administrative boundaries (Briant et al., 2010). The process 
of discretization of space into subspaces with no overlaps and no gaps is called tessella-
tion. Tessellation is essential in understanding geographical space and provides a frame-
work for analyzing geospatial data (Gold, 2016). There are different tessellation methods, 
which are used (and can be combined) for different applications and analytics (Xing et 
al., 2020). White and Kiester (2008) argue that topology affects the outcome of geospatial 
models.  

Many spatial tessellation methods for urban areas are based on discrete global grid sys-
tems (DGGS). These systems have already been well studied and extensively summarized 
in Sahr et al. (2003). The advantages and disadvantages of different methods are ana-
lyzed by Li and Stefanakis (2020). Tessellation methods are grouped into “regular”, “ir-
regular”, and “semi-regular”. The square grid is one of the easiest methods to implement 
and is widely used. For example, Boontore (2011) uses square tessellation to analyze the 
degrees of evenness in the spread of urban development and to enable a comparison 
between subareas. Samsonov et al. (2015) use square grid to characterize urban canyons. 
A well-established implementation of square tessellation is Microsoft’s Bing Map4 Tile 
system, which is also used in this paper. Another common regular tessellation is the 
hexagon grid. Hexagon tessellation is used in Asamer et al. (2016) to optimize charging 
station locations regarding the charging demand of electric taxis and to find optimum 
regions rather than exact positions. For analyzing public transport services, Biazzo et al. 
(2019) cover a city with a hexagonal grid to study the accessibility and inequality in 
different zones as well as lowering the computation times. For the analysis of soil con-
tamination in urban environments, Griffith (2008) uses hexagons to take the impact of 
spatial autocorrelation into account and to find optimal numbers as well as positions of 
soil sample locations. Using e-scooter data and a hexagonal grid, McKenzie and Romm 
(2021) measure the similarity between regions in a city (and cross cities). Smucker et al. 

 
4 https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-system 
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(2016) use hexagon tessellation to study landscape effects on stream water quality. Feick 
and Robertson (2015) use hexagons to capture spatial expressions of Vancouver by using 
geotagged photograph data (GTP) from Flickr. Uber takes hexagons as a basis for its 
applications and publicly provides an implementation of the hexagon tessellation for GIS 
applications, called the h3 grid system (Brodsky, 2018).  

Although these regular approaches are well suited for the analysis of a variety of research 
topics, as the review of previous research shows, they do not adapt to the structure of 
cities. A data-driven irregular tessellation approach to overcome this problem is Voronoi 
diagrams (Aurenhammer, 1991). Generators are used to create polygons based on data. 
These polygons subdivide the space without gaps or overlaps. Generators can be foot-
prints (Fleischmann et al., 2020), street network data (He et al., 2017), or even (clus-
tered) points of interest (POI). There is a wide range of studies that use Voronoi dia-
grams, for example, as in Xinqi et al. (2010) for optimizing regional urban system plan-
ning, as in Sadahiro (2002) for analyzing the spatial structure of an administrative sys-
tem, and as in Bełej and Figurska (2020) for geospatial analysis of real estate prices. By 
analyzing Twitter activity, Frias-Martinez and Frias-Martinez (2014) argue that Voronoi 
diagrams are useful to partition the area while preserving the topological characteristics 
of geolocated tweets as well as respecting the actual shape of the studied area. Another 
common usage of Voronoi diagrams is the analysis of phone-call data when transceiver 
(cell) towers are used as generators (Yuan and Raubal, 2012). Another approach to tes-
sellating urban areas is to create city blocks using road networks. Using a raster-based 
model Yuan et al. (2012) show how street segments can be used to create these polygons. 
The created city blocks with this method are used in Zheng et al. (2011) for analyzing 
GPS trajectories of taxis. Graser (2017) proposes a new approach for creating city blocks 
based on Voronoi diagrams. It uses street intersections as generators and builds polygons 
centered around street intersections rather than closed areas between the street segments.  

The absence of a uniform definition for local tiles that can represent a spatial area with 
additional information leads to the necessity to introduce a new concept, which we call 
Local Geographic Units (LGUs). Tiles are the product of tessellations in general (Am-
mann et al., 1992) in the form of polygons representing only spatial data. To include 
additionally non-spatial attributes such as POI, we propose the concept of LGUs, which 
are a special case of tiles. LGUs combine spatial and non-spatial data within a data-
driven approach that adapts to the structure of cities. Therefore, even “dynamic LGUs” 
are possible since they can be continuously updated regarding their shape and attribute 
according to the changes in cities. LGUs can be a better basis for the analysis of land-
use, socio-demographic trends or traffic patterns, as they do not adhere to administrative 
boundaries, but apply to the whole continuous area. The need for a general unit for 
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spatial and non-spatial data to capture urban areas’ complex structures, which can be 
used in any kind of urban area, city or even rural areas, motivates the POI-based tessel-
lation methods applied in this paper. It studies and compares five approaches to generate 
LGUs: two so-called regular tessellations (squares, hexagons) and an extension we call 
adaptive square tessellation, and two irregular tessellations (Voronoi diagrams and city 
blocks).  

The paper is structured as follows. Section 2 provides basic definitions and introduces 
the general concept of LGUs. In section 3, the data sources are described. Different 
methods to generate LGUs are proposed in section 4. We use the city of Frankfurt am 
Main in Germany as case study to demonstrate different concepts of tessellations. The 
results of the different tessellation methods are presented in section 5. As an example of 
application, section 6 shows the performance of different LGUs as the basis for clustering 
urban areas. Finally, section 7 concludes.  

2 Basic Definitions and Concepts 

A tessellation of a d-dimensional (Euclidean) space, ℝd, can be defined as a set of d-
dimensional regions which cover the whole ℝd without overlaps or gaps. A formal defi-
nition can be found in Okabe et al. (2000). Within the context of urban areas tessellation, 
we work with two-dimensional spatial data. A two-dimensional tessellation is also called 
planar tessellation (Okabe et al., 2000).  

There are various tessellation methods to discretize the Earth’s surface. These methods 
are based on one of the two following approaches: The first approach is to “cut” the 
globe into a two-dimensional plane and discretize the two-dimensional space afterwards. 
The second approach is based on discrete global grid systems (DGGS), which uses a 
platonic solid and lays a corresponding grid onto the surface. DGGS are spatial references 
that use a hierarchical tessellation of cells to partition and address the entire Earth’s 
surface (Peterson, 2016). A HDGGS (hierarchical DGGS) consists of increasingly finer 
resolution grids; i.e., the grids in the series have a monotonically increasing number of 
cells (Sahr et al., 2003). 

We propose the concept of Local Geographic Units (LGUs) as a special case of tessellation 
tiles that contain both spatial attribute (coordinates) and non-spatial attributes (e.g., 
population, area size, number of restaurants). They discretize the spatial space and allow 
further analysis using their non-spatial attribute(s). A formal definition of a LGU is given 
below.  
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Let 𝐷𝐷 ⊂ ℝd be a finite space, Τ = {𝜏𝜏1, … , 𝜏𝜏𝑛𝑛} be a tessellation of 𝐷𝐷, and 𝑀𝑀 = {𝑧𝑧1, … , 𝑧𝑧𝑛𝑛} 
be a set of non-spatial attributes. A Local Geographic Unit 𝑙𝑙𝑖𝑖 = (𝜏𝜏_𝑖𝑖, 𝑧𝑧_𝑖𝑖 ),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜏𝜏𝑖𝑖 ∈
Τ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧𝑖𝑖 ∈ 𝑀𝑀 is called:  

regular, when the tiles are congruent, which is 𝜏𝜏𝑖𝑖 ≅ 𝜏𝜏𝑗𝑗,∀𝑖𝑖, 𝑗𝑗 = 0, … ,𝑛𝑛, 

semi-regular, when the tiles are similar, which is 𝜏𝜏𝑖𝑖 ∼ 𝜏𝜏𝑗𝑗 ,∀𝑖𝑖, 𝑗𝑗 = 0, … ,𝑛𝑛, 

irregular, otherwise.  

The regularity of LGUs only refers to the spatial attribute (geometry) of the LGUs and 
differs only in the shape and size5 of the LGUs. While regular LGUs all have the same 
shape and size (apart from minor errors due to their local projections that can be ne-
glected), semi-regular LGUs are only similar in shape, and differ in size. Irregular LGUs 
have completely different shapes and sizes. In this paper, regular, irregular and semi-
regular tessellations are considered and applied to analyze the structure of cities and 
urban areas. 

With tessellation in general and LGUs in particular, the issues of finding the appropriate 
method and settings (parameters) for each method arise. Too many LGUs (i.e., very 
small LGUs in relation to the space) can result in too many LGUs with zero non-spatial 
attributes, which would imply poor results of the subsequent data analytics methods. On 
the other hand, too few LGUs (i.e., very large LGUs in relation to the space) can contain 
many different non-spatial data, resulting in losing variance between the LGUs, increas-
ing variance within the LGUs, and making subsequent analyses difficult or even mean-
ingless. Finding “good” sizes and shapes for LGUs is somehow a trade-off between too 
much and too little information per LGU, which could be reflected by an appropriate 
metric. To the best of our knowledge, such a metric to compare tessellation methods and 
different settings has not yet been developed. In order to get some insights into the 
difference in the performance of the approaches, the resulting distribution of the number 
of POI per LGU and the results of simple clustering of LGUs are compared in Section 6. 

3 Data Sources 

The largest open-source geospatial database is OpenStreetMap (OSM) (OpenStreetMap 
Wiki contributors). In the past decade, the quality of OSM data was analyzed in several 
studies (Haklay, 2010; Jekel, 2012). Compared to other potential sources, like Facebook 

 
5 Size in the sense of area (e.g., 𝑚𝑚2). 
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or Foursquare, the POI (Points of Interest) locations are much more accurate in OSM. 
Hochmair et al. (2018) find that POI data from Facebook or Foursquare show higher 
mean offsets from their true location compared to the OSM Data. The fact that OSM 
data is open-source and has a large amount of data makes it especially useful for ap-
proaches that should be generalizable to other geographical areas. A further advantage 
of the OSM platform is the simplicity of collecting data from its database. For this paper, 
all data preparations and analyses were done in Python. Details can be found in the 
supplementary materials.  

All the applied methods for generating LGUs should be transferable to any city or rural 
area. To guarantee this, OSM is the only data source used.  

4 Methods 

4.1 Squares 
Being easy to implement, square tessellation is widely used. By creating squares, the 
most relevant question is which projection should be used. Depending on the projection, 
the earth’s surface could be represented in ellipsoid, rectangle or other shapes.  

We apply Microsoft Bing Maps Tile System6,  which is an implementation of square 
tessellation based on Mercator projection. This projection distorts the size and shape of 
areas and gets problematic near the poles; however, it can be neglected since there are 
no large urban areas to analyze in these areas (Winter and Goel, 2021). It preserves the 
shape of relatively small objects, which is essential when analyzing urban areas. To guar-
antee this, one has to choose a sufficiently detailed square size, depending on the size of 
the city.  

4.2 Adaptive Square Tessellation 
We extend square tessellation to an adaptive version. The idea of adaptive refinement 
comes from solving complex differential equations. In numerical analysis, this is called 
adaptive mesh refinement (AMR). The underlying grid7 is refined at certain regions (e.g., 
turbulences or singularities) to ensure a higher accuracy (Gerya, 2019). In this paper, 
regions to be refined are LGUs that exceed a threshold, e.g., LGUs that contain “too 
much” information. These LGUs are subdivided into four smaller squares. “Too much” 
could mean that a given threshold of the number of POI per LGU is exceeded or there 
are too many different POI types included in an LGU. Then this LGU is split up until 

 
 
7 Commonly used girds are triangulations or square-elements.  
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it fulfills the given threshold. Possible thresholds are, for example, the 90% Quantile of 
the number of POI per LGU, the mean number of POI per LGU in the first step, or even 
an arbitrary number depending on the application. The result is a tessellation in which 
densely populated areas are more finely divided. This method is somehow a combination 
of irregularity and regularity since the LGUs have different sizes, but they are still sim-
ilar8 according to shape.  

4.3 Hexagons 
Unlike squares, it is not possible to divide one parent hexagon into multiple smaller 
hexagons without over-lapping or gaps. However, the main advantage of this approach 
is that the distances of each hexagon center point with the center points of its neighbors 
is equal9. A more detailed explanation can be found in Sahr (2014). Uber is an example 
that uses this approach. With its h3 grid system, Uber combines the hierarchical subdi-
visions with a hexagonal grid. The Uber h3 grid system has 16 different resolutions (0 to 
15). The most detailed resolution 15 has an average edge length of 0.5m. We apply this 
implementation provided by Uber.  

4.4 Voronoi Diagrams 
After presenting two of the main regular tessellations and a semi-regular tessellation, we 
describe and apply one widely used irregular tessellation, the Voronoi diagram. General-
ized Voronoi diagrams are created by generators in the plane, like points, lines or poly-
gons, by assigning each location to the nearest generator; nearest in the sense of the used 
metric, e.g., Euclidean or Manhattan. This method differs from regular tessellations as it 
is defined on finite subsets. The Ordinary Voronoi Diagram (OVD) uses points to define 
a tessellation. The formal definition is of Voronoi diagrams is provided by Okabe et al. 
(2000). 

The generators for Voronoi diagrams depend on the use case. We use POI in order to 
capture the structure of a city. If the number of POI is small enough relative to the (city) 
area, POI can directly be used as generators. However, in most cases, the input dataset 
has a vast number of POI. To tackle the problem of the high number of POI, first of all, 
the POI have to be clustered. For this purpose, different clustering algorithms are used 
to group POI, based on their spatial proximity and density. After grouping POI, a gen-
erator is derived from each POI cluster. We used cluster centroid (center of mass) to 
create the generators from the clusters.  

 
8 Similarity in the mathematical sense, that is, one can be obtained from the other by scaling uniformly. 
9 In contrast, a square-based DGGS has two different distances, one with the neighboring square, sharing an edge and one with the 
vertex. In the case of a triangular-based DGGS, there are even three different distances. 



7 
 

The resulting LGUs are of irregular shape because the size and shape depend on the POI 
and the clustering algorithm to generate those. Here, k-means and HDBSCAN10 are used 
to cluster the POI before defining the generators. Figure 1 shows a layered map with the 
individual steps for generating Voronoi polygons using HDBSCAN Algorithms as an 
example. The procedure is the same for k-means.  

 
Figure 1: Procedure for generating Voronoi polygons using HDBSCAN for POI. 

 
10 HDBSCAN is a modification of DBSCAN (Ester et al. (1996)) clustering developed and introduced by McInnes et al.  (2017). 
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4.5 City Blocks 
City blocks are based on the road network11 (or other line segments) of the area. In 
urban morphology, a city block (street block) refers to the smallest closed areas sur-
rounded by road segments, which is used for building construction (Oliveira, 2016).  

One of the two main problems with creating city blocks using this method is that not 
every part of an urban area is part of a city block. Therefore, there may be gaps between 
the city blocks. The second problem is that city blocks can be too small, e.g., a traffic 
island. Traffic islands are identified as city blocks since they are bounded by street seg-
ments. To overcome the first problem, the initially created city blocks are merged and 
subtracted from the whole boundary polygon of the urban area (or the planar space). 
Then, the resulting rest (multi-)polygon is cut into polygons. This guarantees that the 
whole area is filled without gaps. The problem of too small polygons can be addressed in 
multiple ways. One could define a threshold for minimum area size, e.g., 10,000𝑚𝑚2, or 
use clustering algorithms to group small polygons. 

To generate city blocks for an area, the following steps are done: 

1. Define a boundary polygon and collect street network data (e.g., using OSMnx) 
2. Use the polygonize function and the street network to generate the initial polygons 
3. Merge these polygons temporarily resulting in a multi-polygon 
4. Use the multi-polygon to identify the gaps and a define a “Rest-Multi-Polygon” 
5. Polygonize the “Rest-Multi-Polygon” 
6. Merge small contiguous polygons using clustering algorithms to generate the 

LGUs. Here we use hierarchical clustering to identify the merging polygons. For 
this reason, the number of LGUs is equal to the number of clusters which can be 
arbitrarily set.  

The process is visualized in the following Figure 2.  

 
11 Road networks include pedestrian and cycle roads. 
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Figure 2: Procedure for creating city blocks. 

5 Results 

In this section, we demonstrate the resulting tessellations based on the different LGU 
approaches. The city of Frankfurt am Main in Germany is chosen as an example. Frank-
furt has many different geographical attributes that may be difficult to tessellate, espe-
cially using the city block method. Besides rivers and parks, it includes the largest airport 
in Germany in its boundary polygon. An additional challenge arises from the fact that 
the airport includes not only runways but also many POI such as stores and hotels.    

5.1 Regular and semi-regular tessellations 
When using Bing Maps Tile System to create a square grid, a resolution value to define 
square sizes has to be specified. We choose resolutions 16 and 17. The results of the 
square tessellation are shown in Figure 3. The appropriate resolution depends on the use 
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case. For example, when considering all the available POI of a city in OSM, the resolution 
should not be too detailed (e.g., resolution 18) and not too rough (e.g., resolution 14). 
As discussed in Section 6, an indication for a “good” resolution could be the POI count 
per LGU (here per square) and the associated distribution.  

 
Figure 3: Squares as LGUs for Frankfurt am Main. Left and right images show square tessellation using Bing Maps 
Tile System in resolutions 16 (1,786 squares) and 17 (6,811 squares), respectively. 

Figure 4 shows tessellation using adaptive squares. The problem of choosing a “good” 
resolution using this approach turns out to be secondary here, but the choice of the 
threshold is more relevant. The method starts with a low resolution concerning the num-
ber of POI (e.g., a resolution of 14 for all of the available POI of a city). Then the 
implemented algorithm subdivides the whole area until the discussed threshold is not 
exceeded anymore. Here, we used the POI data for Frankfurt, containing approximately 
190,000 POI. Adaptive squares for Frankfurt are demonstrated in Figure 4 using two 
different settings. On the left image, the starting resolution is 14 and the threshold is 
arbitrarily set to 1000. Squares, shown on the right image, start at resolution 15. The 
threshold is the median number of POI per LGU at the starting level 15, i.e., 187.5. As 
expected, the city center is tessellated with a higher resolution than more rural areas. 
Already based on these LGUs, a rough structure is visible.  
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Figure 4: Adaptive squares as LGUs for Frankfurt am Main. 494 squares on the left image from resolution 14 to 16, 
2300 squares on the right image from resolution 15 to 18. 

Similar to the square grid, to create a hexagon grid, a suitable hexagon size must be 
initially specified. The hexagon grid in the following examples and figures are created 
using Uber’s h3 implementation. The size of hexagons can again be modified changing 
the resolution value. Our recommendation is to use a relatively detailed resolution; oth-
erwise gaps may appear at the boundary polygon. Larger hexagons create larger gaps. 
As mentioned early, a good indication for a “good” resolution (hexagon size) could be 
the number of POI per LGU (see Section 6). Figure 5 shows the tessellation of Frankfurt 
with hexagons at levels 8 and 9.  

 
Figure 5: Hexagons as LGUs for Frankfurt am Main. Left and right images show hexagon tessellation using uber h3 
in resolutions 8 (366 hexagons) and 9 (2,590 hexagons), respectively. 
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5.2 Irregular tessellations  
Figure 6 shows the final city blocks for Frankfurt (see Section 4.5). For a plausible com-
parison with the results of the other approaches, it is intended to have roughly the same 
number of city blocks as the number of hexagons and squares generated by the previously 
described approaches. According to Figure 6, city blocks seem to adapt well to the struc-
ture of the city. The city center is more likely to have a denser road network than urban 
areas, which results in more city blocks. Smaller LGUs can be seen in the center and 
busy areas, while the surrounding areas have larger blocks. The airport (southeast) is the 
biggest city block, followed by the city block representing the river Main. It is a further 
indication of the good performance of the city blocks approach that the airport and river 
main are identified as a coherent area. The same is true for parks and forests.  

 
Figure 6: 2,357 city blocks as LGUs for Frankfurt am Main. 

Figure 7 shows the area of Frankfurt, subdivided into LGUs with the Voronoi diagrams 
based on two different preprocessing methods. Because of their large number, POI cannot 
be used directly as generators and need to be clustered. In the left and right examples in 
Figure 7, k-means and HDBSCAN are used respectively to cluster the POI. The centroids 
of the clusters are then used as generators in the Voronoi algorithm. Similar to the city 
blocks, the city center has smaller LGUs than the surrounding area. Each clustering 
method in the preprocessing step has its own advantages and disadvantages for the ap-
plication here. For example, HDBSCAN leads to smaller LGUs where the density of POI 
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is higher, e.g., in the city center. This is useful when a finer separation of the area in the 
city center is desired. Using k-means, all the POI of a cluster end up in the same Voronoi 
polygon.  

 
Figure 7: Voronoi polygons as LGUs for Frankfurt am Main. k-means (444 LGUs) and HDBSCAN (400 LGUs) are 
used in the preprocessing step in the left and right images, respectively. 

6 Discussion 

To demonstrate the performance of the approaches, a simple clustering algorithm is used 
to cluster the LGUs of Frankfurt based on its POI data. This is one possible application 
for LGU: to identify similar areas (clusters) within the cities based on POI. The POI 
data is restricted to five categories (out of 29 OSM primary categories): amenities, shops, 
offices, buildings and public transport stations. These five categories contain a consider-
able share of POI in Frankfurt (approximately 140,000 POI accounting for about 54% of 
the entire tagged POI in Frankfurt).  

Figure 8 shows the distribution of the number of POI per LGU for the different ap-
proaches. City blocks, hexagons, and squares (all do not consider POI data) result in 
more LGUs with zero POIs. The reason is that a large part of Frankfurt is vegetation 
and does not contain any POI in these five categories. This results in a significant share 
of LGUs with zero POI when the polygons are uniformly distributed over the city, i.e., 
squares and hexagons, and also when polygons are created using the road network, i.e., 
city blocks. In contrast, POI are more systematically distributed in LGUs by the methods 
which consider these POI data, i.e., Voronoi diagram and adaptive squares. This is an 
intuitive result, as these methods tend to build smaller polygons where the POI are dense 
(e.g., near city center) and larger polygons where the POI are sparse (e.g., the vegetation 
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part). However, adaptive squares still have a noticeable number of LGUs with zero POI. 
To reduce zeros when using this method, a rougher initial resolution can be chosen.  

 
Figure 8: Histograms of the LGUs distribution regarding their POI count for the 6 investigated cases. 

Using k-means, LGUs created by different tessellation methods are clustered into four 
groups. As a preprocessing step to the clustering methods, the number of POI in each 
LGU is normalized by the maximum number of POI per LGU. For city blocks, a further 
step is done, i.e., normalization by the LGU area, since the area varies drastically between 
the city blocks. For example, there are LGUs with enormous areas like the river Main or 
the airport, and also small LGUs like specific living blocks. This further normalization 
step is not necessary for other methods.  

Figure 9 shows the results of clustering methods based on the different methods for 
generating LGUs, with the first row summing up the regular and semi-regular approaches 
and the second row showing the irregular approaches. For the Voronoi-based LGUs, two 
clustering methods (k-means and HDBSCAN) are presented to visualize the differences 
(see Section 4.4). The centroids of the clustered POI data are used as generators.  
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Figure 9: Clustering Results for Frankfurt am Main using different tessellation methods. 

The two regular tessellation methods, square and hexagon, provide almost identical re-
sults. This is reasonable as their polygon sizes, polygon numbers, and POI distributions 
are similar too (Figure 8). Note that this example may not reveal all the differences 
between these two tessellation methods. These methods could still differ in other anal-
yses. For example, when the contiguity of the polygons is crucial, e.g., when spatial 
autocorrelation is considered. The adaptive squares method produces rather similar re-
sults with significantly fewer clustering units (LGUs). This results in a lower computation 
time (while clustering) in comparison to squares and hexagons. The key insight is that 
near the city center where the variation of POI is higher, the polygons are small and the 
results are as detailed as regular squares, but in other parts where there are not many 
POI (e.g., the part of the city in the south with vegetation) polygons are larger, which 
reduces computation time. 

Voronoi diagram seems to be well suited for finding the city center as a cluster of con-
tiguous LGUs. A difference of Voronoi results with other methods is that the LGUs and 
clusters are more spatially separated. The clusters contain contiguous LGUs (especially 
by k-means Voronoi), unlike squares and hexagons that have clusters with spatially 
mixed LGUs. 

At first sight, the city blocks method leads to the best results. The borders between 
clusters, which are defined by road segments, seem more realistic. Part of the airport is 
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assigned to the cluster 3 by all six methods. It is a single square in case of the regular 
squares methods, a relatively big square in case of the adaptive squares method, two 
hexagons in case of the hexagon method, and random polygons in case of the Voronoi 
methods. However, in case of the city blocks methods, exactly the building in which the 
airport shops are located is identified. This is an example for a very accurate discretiza-
tion. In contrast to the other methods, which have four visible clusters, cluster 3 in the 
city block result is not clear at first sight. An interesting finding is indicated by a deeper 
look into the results: The cluster 3 in the city block method contains only a couple of 
LGUs; the building in the airport where the shops are located and the central train 
station where also its shops are located.  

In addition, the other clusters based on city blocks methods are easy to interpret. Cluster 
0 shows the area predominantly covered with vegetation, cluster 1 represents the resi-
dential areas and cluster 2 has the characteristics of the city center. The sparse LGUs 
belonging to cluster 2, which can be found everywhere in the city, represent the local 
centers of different city districts. A possible reason that the clustering shows a better 
performance for LGUs based on the city blocks method could be that it is the only 
method that uses both POI data and road network data for creating and preprocessing 
the LGUs. 

In summary, all these approaches can work well depending on the use case. The POI per 
LGU distribution can help to evaluate the performance of different LGU approaches and 
the chosen settings. POI-based tessellations are suitable when it is desired to have control 
over the number of POI per LGUs and the distribution of POI have a strong impact on 
the outcome.    

7 Conclusion 

Regular tessellations (squares and hexagons) can be easily implemented and require little 
computational effort. They are suitable for basic applications or when uniform/congruent 
LGUs are needed. Example use cases are rainfall (Goovaerts, 2000) or pollution (Janssen 
et al., 2008) in urban areas. These methods could also be used for spatial interpolation 
since most interpolation methods use mesh grids. A square-based tessellation can be seen 
as a kind of mesh grid (Goovaerts, 2000; Janssen et al., 2008). The studied POI-based 
methods are more sophisticated and complex to implement. They have the advantage of 
being adaptable to urban areas by considering non-spatial attributes. Adaptive Squares 
can also be used for the above-mentioned applications while allowing more complex spa-
tial analysis and lowering the computation time. For spatial studies, POI-based irregular 
tessellations have shown to be suitable approaches in this paper. They also offer more 
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control over the number of LGUs and the distribution of the number of POI per LGU. 
In particular, the Voronoi polygons and the city block method can generate an arbitrary 
number of LGUs by choosing the number of clusters in the clustering step. The distribu-
tion of POI per LGU can be adjusted by using different clustering methods before creat-
ing Voronoi polygons. Possible use cases are spatial clustering and the analysis of traffic 
patterns or socio-demographic structures. These methods are more complex to imple-
ment, but could provide more relevant and accurate results for specific analyses. The 
results of clustering the LGUs based on the methods taken the POI data into account 
indicate that city blocks, in particular, perform better in city segmentation in terms of 
reflecting the structure of the city.  

All presented approaches could be generalized to (almost) any urban area since only 
open-source data is used. In addition, they are scalable to discretize metropolitan regions 
or even countries. Note, however, that a distortion of the LGUs due to the projection is 
inevitable in the case of discretization of large areas.  

Future work should focus on the following points: First of all, the generalizability of the 
studied tessellation methods, e.g., to rural areas with spare POI data, should be evalu-
ated. Furthermore, implementing other POI-based tessellation methods or extensions of 
the proposed ones can be valuable. Higher-order Voronoi polygons, weighted Voronoi 
polygons, other approaches creating city blocks, and other thresholds for adaptive square-
based LGUs are possible extensions. The implementation of city blocks could be based 
on inhabitants instead of road networks. For example, another definition of a city block 
could be a polygon where a specific number of people live. Moreover, LGUs based on 
complex spatial clustering algorithms like DBRS (Wang and Hamilton, 2003) could be 
investigated. Finally, theoretical and data-driven approaches to find the optimal number 
of LGUs should be investigated. However, finding a general approach could be challeng-
ing as these parameters always depend on the research question, the area, and the data.  
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